Pairing Energy Storage with Solar

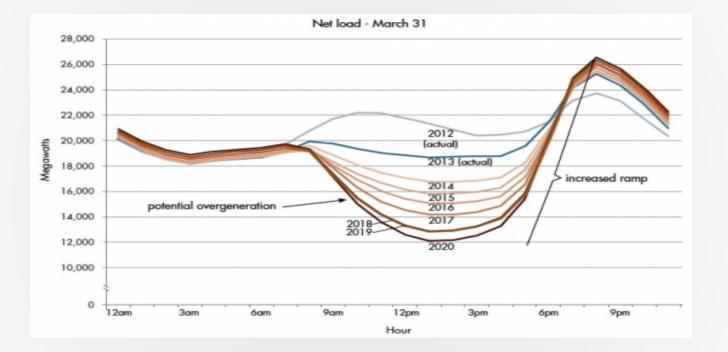
Tilak Gopalarathnam LG Technology Center of America

2019 Energy Storage Technologies and Applications Conference, Riverside, California

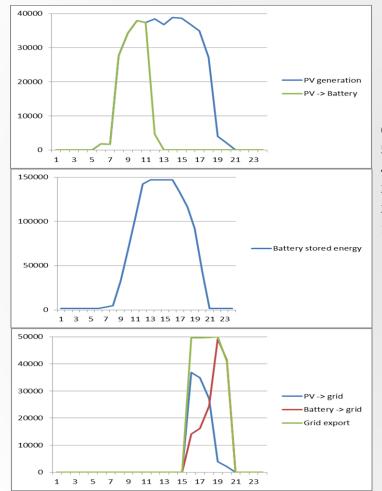
Contents

- Lithium-ion battery products
- The need for peaker plants
- PV + Storage peaker plant operation
- PVS peaker plant architectures
- Economics of PVS plants
- PVS charging strategies
- LCOE comparison
- Summary

Lithium-ion battery products



The Duck Curve



🕑 LG

Desired peaker plant output

Month/ Hour	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
HE1												
HE2												
HE3												
HE4												
HE5												
HE6												
HE7												
HE8												
HE9												
HE10												
HE11												
HE12												
HE13												
HE14												
HE15												
HE16												
HE17												
HE18												
HE19												
HE20												
HE21												
HE22												
HE23												
HE24												

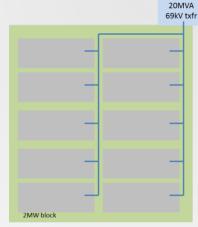
PVS Peaker Plant Operation

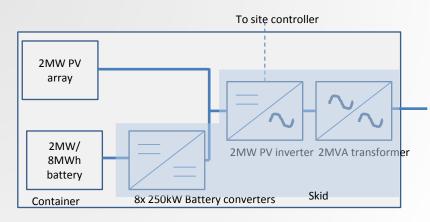
- Illustrative PVS plant
 - 50MW PV / 50MW peak period export
 - Located in the Southwestern US
 - Profiles on sunny Spring day

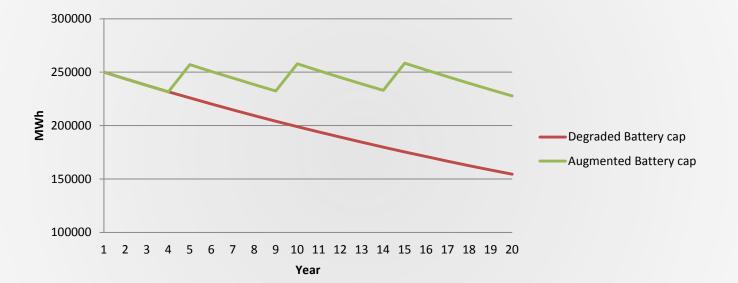
PV + Storage Peaker Output

Month/ Hour	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
HE1												
HE2												
HE3												
HE4												
HE5												
HE6												
HE7												
HE8												
HE9												
HE10												
HE11				-								
HE12		-								-	1	
HE13	-	<u> </u>										
HE14												
HE15												
HE16												
HE17												
HE18												
HE19												
HE20 HE21												
HE21 HE22				<u> </u>	<u></u>							
HE22 HE23												
HE23												
nc24												

PVS Plant Architectures


Centralized architecture


- AC coupling of solar and storage
- 50MW PVS plant layout
- 50MW PV field
- 50MW/ 150MWh ESS in a building


Distributed architecture

- DC coupling of solar and storage
- 20MW plant layout
- 2MW PVS blocks

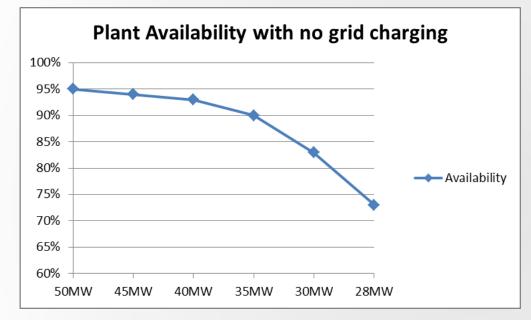
Battery Augmentation

🕑 LG

PVS plant economics

- Capex
 - PV modules, Balance of System, Batteries, Building/ container, EPC, Software, interconnection
- Opex
 - O&M, Software license, Warranty, Battery augmentation, Wholesale energy purchase
- Solar Investment Tax Credit (ITC)
 - 30% credit if construction begins before 2020, 26% if in 2020 and 22% if in 2021
 - 10% thereafter
- ITC for Storage
 - Can be applied if >75% of battery charging energy is from PV
 - Decreases linearly from 100% PV charging energy to 75% PV charging energy
- Revenue from Power Purchase Agreement
 - Rate is typically higher during peak periods (rate multiplier)
- Levelized Cost of Energy (LCOE) is used to compare economics

LCOE =
$$\frac{\sum_{n=0}^{N} \frac{C_n}{(1+d)^n}}{\sum_{n=1}^{N} \frac{Q_n}{(1+d)^n}}$$


N: project life, 20 years

Cn: Annual project cost in year n including Capex, Opex and augmentation costs

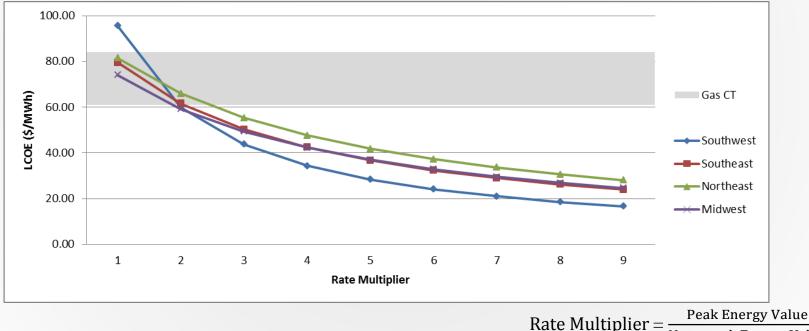
Qn: Energy generated by PVS system in year n, weighted by rate multiplier

d: Real discount rate

Optimizing plant size for Availability

Availability = $\frac{\text{# of peak period hours per year with required export}}{\text{# of peak period hours per year}}$

Optimal parameters							
PV size	50MW DC						
Storage size	50MW/ 250MWh						
Capex	\$72M						
Availability	95%						
LCOE	\$60.07 /MWh						
ITC for storage	30%						


PVS plant comparison across regions

	Southwest	Southeast	Northeast	Midwest				
PV size	50MW DC	100MW DC						
Min. Availability	95%							
Storage size	50MW/ 250MWh	35MW/ 175MWh	25MW/125MWh	30MW/ 150MWh				
Storage : PV	1	0.35	0.25	0.3				
LCOE (base case)	\$96/MWh	\$79/MWh	\$82/MWh	\$74/MWh				

- The optimal Storage/ PV ratio of PVS Peakers varies from region to region
- PVS in the Southwest has the highest storage to PV ratio
 - High insolation with few cloudy days
 - However, base-case (flat rate structure) LCOE is highest
 - Maximizing battery size is not economical with flat rates
- PVS in the Northeast has the lowest storage to PV ratio
 - Low average insolation with many cloudy days

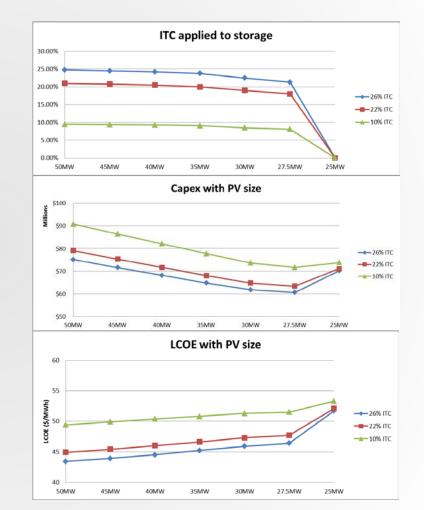
LCOE comparison

- Impact of rate multiplier
 - As the relative value of peak energy increases, LCOE of all plants decrease
 - But PVS in the Southwest shows the biggest improvement
 - For a multiplier of 3 and above, the Southwest PVS plant shows the best performance
- Competitive with Gas Combustion Turbine
 - At multiplier of 3 and above, PVS in all regions is competitive with Gas CT (2020 pricing)

 $Siplier = \frac{Si}{Non - peak Energy Value}$

🕒 LG

PVS with grid charging enabled


Optimal plant parameters (Grid charging)								
PV size	30MW DC							
Storage size	50MW/ 240MWh							
Capex	\$60.2M							
Availability	100%							
LCOE	\$45.9 /MWh							
ITC for storage	26%							

Month/ Hour	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
HE1												
HE2												
HE3												
HE4												
HE5												
HE6												
HE7												
HE8												
HE9												
HE10												
HE11												
HE12												
HE13												
HE14												
HE15												
HE16				<u> </u>								
HE17												
HE18												
HE19												
HE20												
HE21												
HE22												
HE23												
HE24												

Optimizing charging strategy

🕑 LG

- With partial grid charging
 - Optimal plant size is similar to the case of 30% ITC
 - Capex can be lowered by decreasing PV size
 - Lower ITC eligibility on storage

Summary

- Optimized PVS peakers are competitive with gas peakers now (with the solar ITC)
- PVS peakers should be optimized for LCOE considering both PV size and battery capacity

- The optimal Storage/ PV ratio of PVS Peakers varies from region to region
- Distributed architecture of PVS plants can be competitive with centralized architecture even for large capacity
- Minimum required Availability will factor into PV sizing if grid charging is not initially enabled
- Lower LCOE and Capex can be obtained by enabling grid charging while increasing availability to 100%