

Electric Vehicles and Energy Storage: ¹ Impacts on Distribution Grid Operations

Farrokh Albuyeh, Ph.D. Senior Vice President, Smart Grid Projects Open Access Technology International, Inc.

UC Riverside April 11-12, 2019

Trade Secret

This document and attachments contain confidential and proprietary information of Open Access Technology International, Inc. This information is not to be used, disseminated, distributed, or otherwise transferred without the expressed written permission of Open Access Technology International, Inc.

Proprietary Notice

All OATI products and services listed are trademarks and service marks of Open Access Technology International, Inc. All rights reserved.

Topics

- Current Trends Electric Vehicles (EVs) and Energy Storage
- Impacts on Electric Power Industry Operations and Bottom Line
- Smart Inverters
- Provision of Grid Services
- Case Studies
- Questions

Industry in Transition

- Focus on the Environment
- Federal Energy Regulatory Commission (FERC) Order 841
- De-carbonization of Power and Transportation Sectors
 - Example: U.K. de-carbonization plan
 - Objective: cut residential, industrial, transportation, and power sector greenhouse gas emissions
 - \$210 million in Research and Development, \$4.7 billion to upgrade around 1 million homes, and \$5.9 billion to support low carbon heat technologies in homes and businesses between 2016 and 2021
 - Higher taxes on diesel engines, 25% subsidy on the cost of new plug-in vehicles, 12,000 charging points (2017)

Industry in Transition (Continued)

- Example: Volvo will sell only Plug-in Hybrid Electric
 Vehicles (PHEVs), introducing electric trucks
- Example: The California Public Utilities Commission (PUC) approved \$750 million for proposals from the state's investor-owned utilities to expand EV infrastructure and rebate programs

Battery Storage Systems and EVs

- Lithium-Ion Batteries
 - Increasing demand
 - Lowering of prices \$70/kWh by 2030
- EVs
 - Government incentive programs
 - Tightening fuel economy standards
 - Commitments from auto makers: Volkswagen, Volvo, Daimler, and Nissan
 - Growing commitment to invest in charging infrastructure

2019 Energy Storage Technologies and Applications Conference, Riverside, California

battery pack

prices in 2030

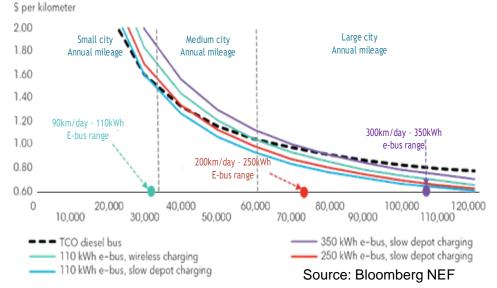
559 Million EVs

on the road by 2040

55% EV Share

of new car sales in 2040

EVs - O&M/TCO

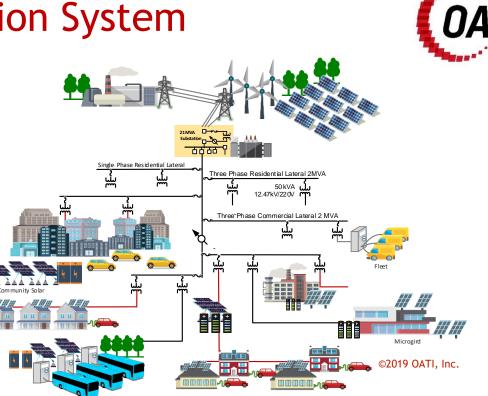

And the second second	
	-/
	-

Winston Chung

Global Energy Center

	EV	ICE
Oil Change	\$0	\$10,000
Transmission Fluid	\$0	\$50
Fuel	\$3,500	\$12,500
Spark Plugs/Wires	\$0	\$200
Muffler	\$0	\$150
100 K Maintenance	\$0	\$1,100
Battery Life 15 Years	\$5,500	N/A
Total O&M Costs	\$9,000	\$24,000
	So	urce: eMotorWerks

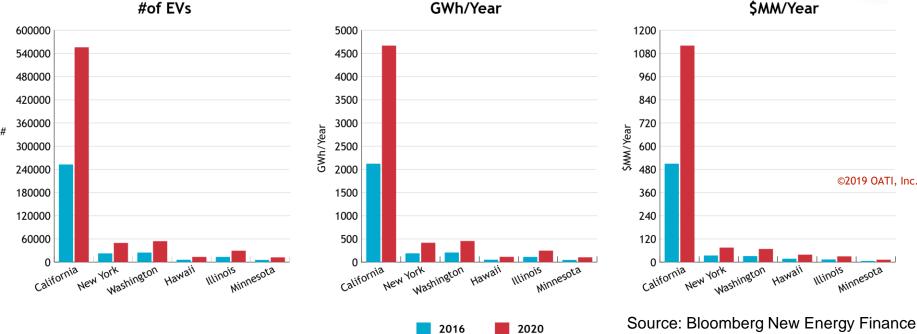
TCO comparison for e-buses and diesel buses with different annual distance traveled



Note: Diesel price at \$2.5/gallon, electricity price at \$0.10/kWh

Impact on Distribution System

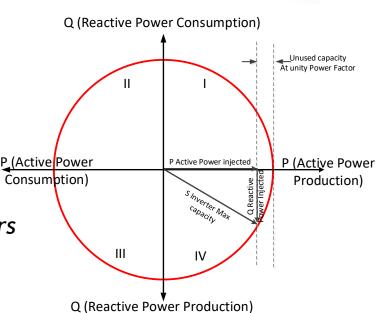
- Reverse Power Flows
- Voltage Fluctuations
- Phase Imbalances
- Frequency Fluctuations



Impact on the Utility Business

Utility's Role

- Develop EV Rate Options
- Enhance Charging Infrastructure
- Manage Charging Stations
- Enable Delivery of Grid Services



Delivering Services - Smart Inverters

- CA Rule 21, IEEE 1547.a, IEEE 2003.5, IEC 61850, UL 1741, UL 1998, and SEP 2 and DNP 3.0
- New Regulations and Requirements for Smart Inverters
 - Real and reactive power control
 - Operating regions with differing behaviors
 - Low/high voltage and frequency ride through

Modes of Operations - Autonomous

- Measure Local/Terminal Variables (Voltage, Frequency, Active Power, and Reactive Power)
- Local Control Decisions based on Pre-set Thresholds and Parameters
- Addresses Local Issues
- Fast Response (Cycles-Sub Second)
- No Requirements for Sophisticated Communications and Remote Control

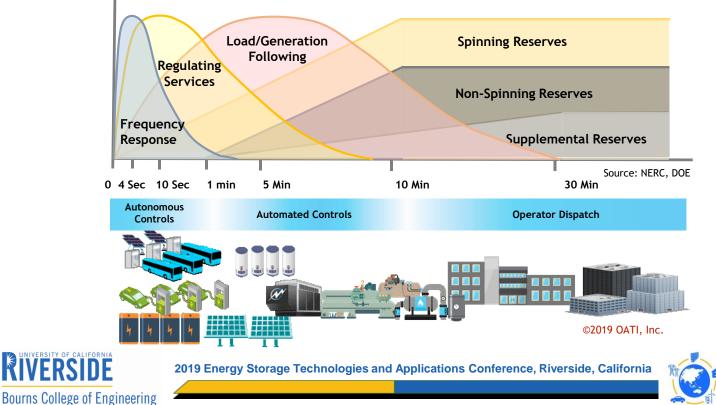
OATI

Modes of Operations - Remote Control/ On Demand

- Measures and Communicates Local/Terminal Variables (Voltage, Frequency, Active Power, Reactive Power)
- Control Instructions from the Distributed Energy Resource Management System (DERMS)
- Addresses System-wide Issues in Concert with Other Resources
- Response in Near Real-Time (RT) (seconds/minutes)
- Requires Communications and Control Infrastructure

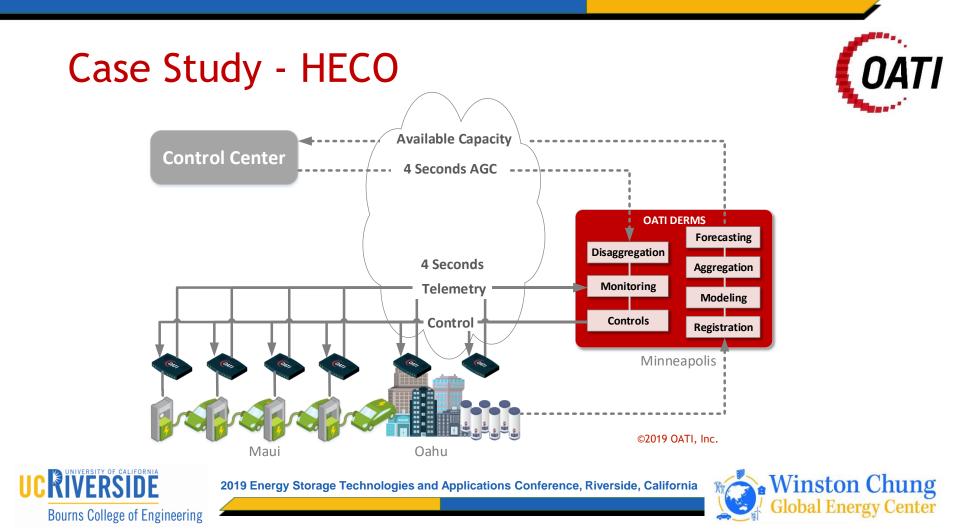
Delivering Services

- Vehicle to Building (V2B)/Vehicle to Home (V2H)
 - Improved economics
 - Improved resiliency
- Vehicle to Grid (V2G)
 - Improved resiliency
 - Provision of grid services (capacity, energy, frequency response, regulation, reserves, and voltage support)
 - Non-wires alternatives, deferment of capital expenditures

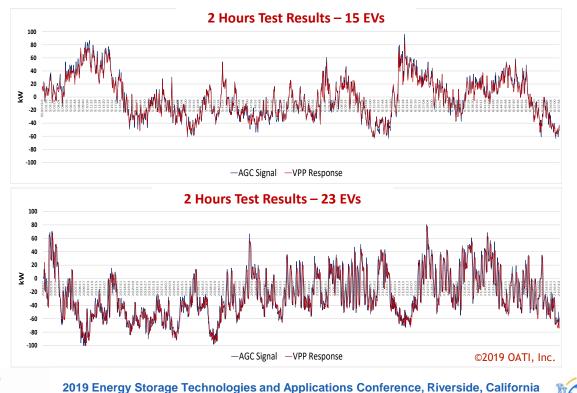


Focus on Grid Services

Dispatch during normal conditions Dis


Dispatch during Contingency conditions

Winston Chung Global Energy Center



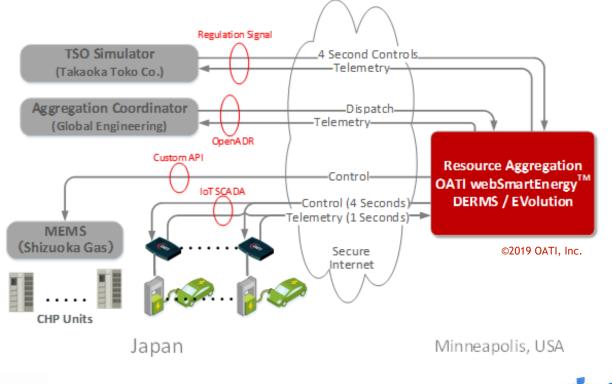
Case Study - HECO (Continued)

Bourns College of Engineering

Case Study - HECO (Continued)

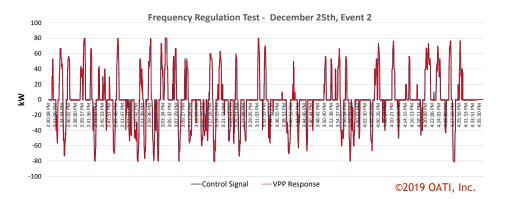
	15-Jun	20-Jun	22-Jun	27-Jun	29-Jun	Average
Number of EVs	15	16	15	23	18	17.4
Accuracy	96.6	96.0	93.4	97.0	93.5	95.3
Delay	100.0	100.0	100.0	100.0	100.0	100.0
Precision	96.6	93.9	91.6	90.0	94.6	93.3

Composite	97.7	96.6	95.0	95.7	96.0		90
-----------	------	------	------	------	------	--	----



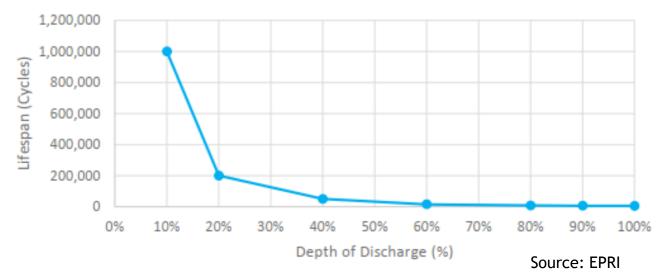
©2019 OATI, Inc.

Case Study - METI



Case Study - METI (Continued)

PJM Scores	Jan 19 - Event 3-	Jan 19 - Event 3-	Jan 19 - Event 4-	Jan 9 - Event 4-Hour
PJIVI Scores	Hour 1	Hour 2	Hour 1	2
Accuracy Score	0.9888	0.9840	0.9656	0.9838
Delay Score	1.0000	1.0000	1.0000	1.0000
Precisioon Score	0.8595	0.8652	0.8100	0.8254
Composite Score	0.9494	0.9497	0.9252	0.9364



Impacts on Battery Life

Lifespan (Cycles)

Questions

Thank You!

Farrokh Albuyeh, Ph.D. Info@oati.net 763.201.2000

